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a b s t r a c t

A numerical framework based on the generalized finite element method (GFEM) is devel-
oped to capture the coupled effects of thermomechanical deformations and thermal gradi-
ents on the regression rate of a heterogeneous solid propellant. The thermomechanical
formulation is based on a multiplicative split of the deformation gradient and regression
of the heterogeneous solid propellant is simulated using the level set method. A spatial
mesh convergence study is performed on a non-regressing solid heterogeneous propellant
system to examine the consistency of the coupled thermomechanical GFEM solver. The
overall accuracy (spatial and temporal) of the coupled thermomechanical solver for
regressing solid propellants is obtained from a periodic sandwich propellant configuration,
where the effects of thermomechanical deformations on its regression rate is investigated.
Finally, the effects of thermomechanical deformations in a regressing two-dimensional
heterogeneous propellant pack are studied and time-average regression rates are reported.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction
Heterogeneous solid propellants usually consist of highly loaded composites made of energetic particles embedded in a
soft incompressible elastomeric binder. Of particular interest in this study are AP/HTPB propellants composed of very stiff
Ammonium Perchlorate (AP) particles embedded in a soft elastomeric Hydroxyl-Terminated-Poly-Butadiene (HTPB) binder
(Fig. 1). In a steadily regressing solid propellant, stresses and temperatures sufficiently far away from the propellant surface
are relatively uniform. However, close to the propellant surface, i.e., within the thermal boundary layer, thermal conduction
within the solid generates steep thermal gradients that give rise to large thermomechanical strains. Heterogeneity of the so-
lid propellant results in differential thermal expansions and regions of high stress concentrations across AP/HTPB interfaces.
In some scenarios, the AP/Binder interface may experience tensile stresses that lead to debonding which may affect the
regression phenomena and sometimes lead to catastrophic failure [3].

A majority of the experimental and theoretical studies investigating the effect of deformation on propellant regression
have been performed predominantly on pre-cracked macroscopic solid propellant specimens. Kumar et al. [4,5] observed
an increase in pressure near the crack front with an increase in crack length and Kuo et al. [6] observed crack branching
at high pressurization rates. Recently, Berghout et al. [3] carried out a comprehensive study on the macroscopic effect of dam-
age on the propellant surface regression. They conclude that a minimum macroscopic crack width is required to cause any
significant change in propellant regression rate. However, to our knowledge there has been no experimental effort that
has studied the effect of microscopic deformations on propellant regression, within the thermal boundary layer. Kuznetsov
. All rights reserved.
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Fig. 1. Heterogeneous solid propellant; (a) sample of heterogeneous solid propellant [1]; (b) tomographic image of the complex microstructure [1]; and (c)
computer generated pack used in numerical modeling [2].
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and Stewart [7] carried out one-dimensional theoretical and numerical studies to determine the effect of thermal expansion
and variable thermal properties on regression rates of a homogeneous solid propellant within the thermal boundary layer and
observed that the thermal expansion results in a regression rate decrease.

The numerical treatment of regressing heterogeneous solid propellants pose several challenges. The first one is the accu-
rate representation and discretization of the heterogeneous microstructure, especially for high loadings of AP (Fig. 1). Recent
advances in the generalized finite element method (GFEM) [8–12] have provided a novel approach to tackle this complexity
wherein the finite element mesh does not have to conform to the microstructure. The second challenge associated with the
modeling of solid propellants arises from significant differences (with the AP particles about 4000 times stiffer than the bin-
der) in stiffness between AP and HTPB binder and from the nearly-incompressible nonlinear material behavior of the binder.
Yet another difficulty is the accurate modeling of the complex combustion processes responsible for ignition and propaga-
tion of the propellant flame that causes steady propellant regression. Furthermore, regressing heterogeneous solid propellant
surfaces are seldom planar and undergo complex topological changes. Evolving topologies have been successfully modeled
by the level set method [13]. In particular, Wang et al. [14–16] have developed level set-based methods capable of simulat-
ing two- and three-dimensional combustion of heterogeneous solid propellants in the absence of thermomechanical defor-
mation. Finally, large thermal expansions near the propellant surface lead to significant changes in shape and curvature that
influence thermal conduction. Therefore, coupled effects of thermal conduction and thermomechanical deformations have to
be considered simultaneously.

The objective of the present work is to develop a numerical framework, based on the generalized finite element method,
capable of simulating regression of heterogeneous solid propellants experiencing large thermomechanical strains. In this pa-
per, we present a thermomechanical formulation based on the multiplicative split of the deformation gradient and a level
set-based surface regression model for heterogeneous propellants. In our previous work [12], we have formulated and tested
a generalized mixed finite element method to simulate the (isothermal) mechanical deformations in highly disparate heter-
ogeneous material systems with nearly-incompressible behavior. In this paper, we extend the generalized mixed finite ele-
ment method to accommodate both thermomechanical deformations and evolving surface topologies in propellant
regression problems. We adopt an approach similar to Ji et al. [17] where dynamics of thermally induced swelling of com-
pressible gels was investigated using the assumed gradient level set method [18].

In this introductory study, we do not introduce the complex combustion reactions at the propellant surface and the
resulting transport of the product gases [14,19,20]. Instead, we assume that the heat generated by the gaseous products
is constant and is applied along the propellant surface as a simple heat flux. We assess the spatial and temporal convergence
properties of the proposed numerical method using a periodic sandwich propellant problem [19] and investigate the effect of
deformation on the regression of both periodic sandwich propellants and heterogeneous propellant packs.

The remainder of the paper is organized as follows: in Section 2.2, the governing equations for the regression of a heter-
ogeneous solid propellant are summarized, followed in Section 3 by the derivation of a weak formulation of these equations.
The generalized finite element approximations, in the context of a mixed method, and the level set method for propellant
regression are discussed in Section 4. Section 5 describes the convergence test employed to assess the numerical method-
ology derived for thermomechanical deformations and examples of regression of two-dimensional sandwich and heteroge-
neous propellant packs are presented to demonstrate the efficacy of the method.

In this paper, we denote second-order tensors with uppercase boldface Roman letters, e.g. F and vectors in a reference
configuration with capital boldface italic Roman letters Q, while other vectors are denoted by lowercase boldface italic Ro-
man and Greek letters, e.g. u and k. Fourth-order tensors are denoted using the calligraphic font, e.g. A.

2. Thermomechanical model for propellant regression

Let u : X0ðt0Þ ! X0ðtÞ represent the regression of a heterogeneous solid propellant surface C0
I in the time interval ðt0; tÞ

and let the domain X0 be composed of solid Xs
0 and fluid Xf

0 regions separated by the solid–fluid interface C0
I , as illustrated in

Fig. 2. The domain Xs
0 represents a N-phase heterogeneous solid propellant ðXs

0 ¼
S
Bi

0; i ¼ 1 . . . NÞ system, while Xf
0 repre-

sents the phase consisting of gaseous products released by combustion processes at the propellant surface C0
I . In addition to



Fig. 2. Schematic of regression of heterogeneous solid propellant system X0 composed of solid and gaseous phases ðXs
0;X

f
0Þ separated by an interface C0

I . X0

and X represent the reference and deformed configurations of the propellant.
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the solid–fluid interface C0
I , solid–solid interfaces S0 separate the solid phase Xs

0 into its constituents (AP particles and HTPB
matrix). Unlike the regressing solid–fluid interface C0

I , the solid–solid interface S0 remains stationary.
The regression of the propellant surface C0

I depends on the local surface temperature and hence requires accurate reso-
lution of the temperature field. The regression phenomena are also influenced by deformations on the propellant surface
caused by large thermal gradients in the vicinity of the interface C0

I . Therefore, an accurate description of the regression phe-
nomena entails solution of temperature and deformations simultaneously. In the present study, we restrict our attention to
solution of temperature and thermomechanical deformations in the solid phase Xs

0 alone, and assume the flow of heat Qf

from the fluid phase Xf
0 into the solid phase to be a constant.

The multi-physics nature of this problem naturally raises the question about the relevant length and time scales. This is-
sue has been addressed previously in the work of Hegab et al. [19], who report that the typical length and time scales for the
gas phase (not considered in this work) are Lg ¼ 3:10 lm and tg ¼ 1:36� 10�6 s, while those of the solid phase are
Ls ¼ 27:8 lm; ts ¼ 2:80� 10�3 s, respectively. Finally, the length and time scales for the interface are Li ¼ 20:1 lm and
ti ¼ 2:00� 10�3 s. These length and time scales provide characteristic wave speeds for a thermal wave in the solid phase,
cT ¼ 0:01 m=s, and the regression rate, rb ¼ 0:01 m=s. One should also assume elastic longitudinal and shear waves governed
by cl ¼

ffiffiffiffiffiffiffiffiffi
E=q

p
and cs ¼

ffiffiffiffiffiffiffiffiffi
l=q

p
, where E represents Young’s modulus and l denotes the shear modulus, respectively. Assuming

the properties of a more compliant blend presented in Section 5, we get cl ¼ 88 m=s and cs ¼ 51 m=s. As expected, the ther-
mal wave speed and the regression rate are of a similar order, and thus, must be resolved concurrently. On the other hand,
the elastic waves are approximately 5000 times faster and are therefore neglected in this work.

With the length and time scales discussed above in mind, we outline in this section the governing equations that describe
the thermomechanical deformation and temperature fields. In addition, the regression of the heterogeneous solid propellant
surface C0

I using a level set method [13] is also described.

2.1. Kinematics

The heterogeneous solid propellant Xs
0, as shown in Fig. 3, is assumed to be a multi-material hyperelastic body in an initial

configuration B0 � R3 and homogeneous reference temperature H0ðX; tÞ that undergoes a motion /ðX; tÞ and change in
internal energy to the current configuration B � R3 at a temperature Hðx; tÞ. Here X and xð2 R3Þ designate the position of
a particle in the reference B0 and current B configuration, respectively. Let FðX; tÞ ¼ rX/ðX; tÞ be the deformation gradient
at the current time t 2 Rþ with the Jacobian given by J ¼ detðFÞ, and let C ¼ FT F be the right Cauchy–Green tensor, then the
displacement vector u is obtained from x ¼ X þ u.



Fig. 3. Illustration of the mapping of a bimaterial system from B0 to B through an intermediate stress-free configuration BH .
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Without loss of generality, the heterogeneous solid propellant is considered to be a bimaterial system in the description
that follows. Suppose now that the body B0, with a homogeneous reference temperature of H0, is divided by a material inter-
face S0 with a unit normal N. We assume that the material interface partitions the body into two subbodies B�0 , occupying the
plus and minus sides of the material interface, S�0 , respectively. The deformation on either side of the interface is denoted by
/� : B�0 ! B�. The mapping F is further decomposed multiplicatively into a volume change associated with free thermal
expansion/contraction HF and a stress-producing isothermal deformation eF [21,22], as shown in Fig. 3,
F ¼ eFHF: ð1Þ
The intermediate configuration BH is assumed to be isolated from the body and is obtained through a stress-free volumetric
expansion/contraction of B0 subjected to a relative temperature field DH ¼ H�H0. For inhomogeneous deformation and
temperature fields, the mappings from B0 to BH and BH to B need not be continuous one-to-one mappings, and the total
deformation F is the only true deformation gradient. An arbitrary rigid-body rotation superposed to BH will yield another
stress-free intermediate configuration resulting in a non-unique decomposition (1). Therefore, we specify a unique decom-
position for thermally isotropic solids with a thermal deformation gradient HF given by
HF ¼ bðHÞ1; ð2Þ
where b represents the stretch ratio in any material direction and 1 is the second-order identity tensor. The linearized form
of the thermal stretch ratio b is a function of the coefficient of linear thermal expansion ~a given by
bðHÞ ¼ exp
Z H

H0

~adH
� �

’ 1þ ~aðH�H0Þ: ð3Þ
2.2. Governing equations

In this section, we derive the governing equations for thermomechanical deformations and temperature field in the solid
propellant. The multiplicative decomposition of the deformation gradient F enables an additive split of the Helmholtz free
energy w [21,22] given by
w ¼ ewðeF;HÞ þ HwðHÞ; ð4Þ
where ew is a hyperelastic strain energy potential that depends on the deformation gradient eF and temperature H, while Hw
is a thermal potential that depends on temperature H alone. Particular choices of ew and Hw that yield governing equations
and constitutive laws for the solution of thermomechanical deformations and temperature field are described in Sections
2.2.1 and 2.2.2, respectively.

2.2.1. Thermomechanical formulation
To accommodate significant difference in material shear and bulk response of the binder, the deformation gradient eF is

decomposed into a dilatational/volumetric and a deviatoric/isochoric part. The volume-preserving part of the deformation
gradient eF is given by
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ebF ¼ eJ�
1
3eF; ð5Þ
while an independent variable c is used to capture the volumetric response,
c ¼ eJ; ð6Þ
and we introduce eF ¼ c1
3ebF as a mixed deformation gradient with �F ¼ eFHF. Note that, in the finite element formulation that

follows, (6) is enforced in a weak sense.
In this study, ew is the neo-Hookean strain energy functional eW composed of distortional ecW and dilatational eU parts as

in [12],
qH
ewðeF;HÞ ¼ eW c1

3ebF� �
¼ ecW ðeFÞ þ eUðcÞ; ð7Þ
and the first Piola–Kirchhoff stress tensor P defined on B0 is given by
P ¼ q0

b2
eF
@ew
@eF

����
eF¼eF

; ð8Þ
with q0 and qH; ðq0 ¼ HJqHÞ, being the densities at the reference and intermediate configurations B0 and BH, respectively. By
selecting proper potential functions, ecW and eU, we can model both compressible and nearly-incompressible solids.

Upon imposition of quasi-static equilibrium and boundary conditions, we obtain the governing equations for thermome-
chanical deformations in the reference configuration B0 as
$X � Pþ b0 ¼ 0 in B�0 ;

P � N ¼ t0 on @BT ;

sP � Nt ¼ 0 on S�0 ;

/ ¼ /p on @Bu;

ð9Þ
where s � t is the jump operator, N is the unit normal in the reference configuration, b0 is the body force vector acting per unit
volume of B�0 ; t0 is the externally applied traction vector on @BT , and /p is the externally applied displacement vector on @Bu,
with @BT \ @Bu ¼ ;.

2.2.2. Thermal conduction
To derive the governing equation that describes the temperature field in the solid propellant, we assume the purely ther-

mal part of the Helmholtz free energy Hw to be
Hw ¼ cðH�H0Þ � cH ln
H
H0

; ð10Þ
where c is the specific heat at constant deformation (volume). The specific entropy g satisfies the Gibbs relation:
g ¼ �@w
@H

����
F
: ð11Þ
Next, we write a standard energy balance equation in the spatial configuration
_ec ¼ r : d� divqþ r; ð12Þ
where ec is the internal energy in the current configuration, r ¼ 1=JPFT is the Cauchy stress tensor, d denotes the rate of
deformation tensor and r represents the heat source. For the small strain rates present in this investigation, we neglect
the stress power, as typical for hyperelastic materials under the quasi-static loading. Upon neglecting the dissipative micro-
structural changes caused by thermoelastic deformation and the associated entropy production, the rate of specific entropy g
caused by heat flow is given by
H _g ¼ 1
q
rx � q: ð13Þ
The spatial heat flux q in the current configuration B is modeled using Fourier’s law,
q ¼ �KðHÞrxH in B�; ð14Þ
where the temperature dependent thermal conductivity K > 0. Note that q satisfies the Clausius-Duhem inequality
q � rxH 6 0 on either side of the material interface S. Here rx represents the spatial deformation gradient given by
rxð�Þ ¼ rXð�ÞF�1. The nominal heat flux vector Q in the reference configuration B0 is obtained by performing a pull-back
of the spatial heat flux vector, q,
Q ¼ �JKðHÞC�1rXH in B�0 ; ð15Þ
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and the nominal heat flux vector Q satisfies the Clausius-Duhem inequality Q � rXH 6 0 as well. Combining Eqs. (10), (11)
and (13), we obtain the governing equation for temperature H in the reference configuration as
q0ðX; tÞc _HðX; tÞ � rX � Q ¼ 0 in B�0 ;

sQ � Nt ¼ 0 on S0;

H ¼ Hp on @BH;

Q ¼ Q p on @Bp;

ð16Þ
where q0ðX; tÞ ¼ Jqðx; tÞ, Hp is the applied temperature field on boundary @BH and Q p is the applied heat flux on boundary
@Bp.

2.3. Propellant regression

The propellant regression is modeled using an assumed gradient level set method [18], where the propellant surface is
represented as the zero level set of a scalar function UIðX; tÞ [13,14].

In the present study, the propellant surface is evolved in time using the modified level set advection equation
_UIðX; tÞ þ veðX; tÞ ¼ 0 in X0; ð17Þ
where veðX; tÞ, commonly referred to as the extension velocity [23,24], physically represents the local regression rate on the
propellant surface closest to the point X. For heterogeneous solid propellants, the extensional velocity ve along the propel-
lant surface ðUI ¼ 0Þ is the same as the local surface regression rate rb, i.e.,
vejUI¼0 ¼ rb: ð18Þ
A simple pyrolysis law is used to relate the surface regression rate rb to the surface temperature Ts,
rb ¼ A expð�Ea=RTsÞ; ð19Þ
where Ea is the activation energy, A is the Arrhenius constant, and R is the universal gas constant. Note that we do not use the
level set method to capture the discontinuity. The discontinuity is captured by the GFEM. Level set is used only to describe
the geometry of the front and its motion, not the resulting discontinuities in displacement and temperature gradients.

2.4. Propellant surface jump conditions

The jump conditions at the propellant surface relate the solution in the solid phase Xs
0 to the fluid/gas phase Xf

0. As men-
tioned in Section 2.2, we numerically resolve thermomechanical deformation and temperature in the solid phase Xs

0 alone,
and assume the normal heat flux generated in the fluid phase to be a constant Q f acting along the solid–fluid interface C0

I .
The balance of normal heat fluxes across the solid–fluid interface C0

I yields
sQ � Nt ¼ ðQf � QsÞ ¼ �qsM; ð20Þ
where the mass flux M ejected from the solid phase at the propellant surface is a function of the local regression rate rb (19)
and is given by
M ¼ qsrb ¼ qsA expð�Ea=RTsÞ: ð21Þ
Note that rb;qs and qs take on different values for the AP and the binder with qs > 0 ð< 0Þ for exothermic (endothermic) pro-
cesses. The heat added into the solid phase Qs evaluated from (20) and (21) is
Qs ¼ Q f þ qsqsA expð�Ea=RTsÞ: ð22Þ
It is evident from (22) that the heat added to the solid phase at the propellant surface is dependent on the local surface tem-
perature Ts, thereby rendering the initial value problem (16) nonlinear.

3. Weak formulation

For completeness and clarity of presentation, we summarize here the weak formulations of the governing equations (9)
and (16). The motion of the body /� governed by (9) is based on a Discontinuous Deformation Map (DDM) method that ad-
mits jumps in primary fields as well as its gradients, with the continuity of the primary fields enforced weakly [12]. A similar
approach is adopted for (16) where jumps in both the temperature and its gradient are admitted and the continuity of tem-
perature is again enforced weakly.

3.1. Thermomechanical deformations

The de Veubeke-Hu-Washizu variational statement of the thermomechanical governing equations (9) in the reference
configuration reads
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Pð/;p; c; kÞ ¼
Z
B�0

HJ ecW ðFHF�1Þ þ eUðcÞ
n o

dV0 þ
Z
B�0

HJpðeJ � cÞdV0 þ
Z

S0

k � s/tdS0 þPext; ð23Þ
where p is the pressure and k is the Lagrange multiplier vector that enforces continuity of the deformation maps /�, i.e., the
interface tractions. Pext is the total potential energy associated with body forces b0 and externally applied tractions t0. For
isotropic thermal expansion described by (2) and HJ ¼ b3ðHÞ, the stationarity condition of (23) gives
dPð/;p; c; kÞ ¼
Z
B�0

b2bP : dFdV0 þ
Z
B�0

b3U0ðcÞdcdV0 þ
Z
B�0

dpðJ � cb3ÞdV0 þ
Z
B�0

pðdJ � dcb3ÞdV0 þ
Z

S0

dk � s/tdS0

þ
Z

S0

k � sd/tdS0 þ dPext ¼ 0 ð24Þ
for all admissible variations
du 2 H1ðB0Þ
h i

; du ¼ 0 on @Bu;

dp 2 L2ðB0Þ; dc 2 L2ðB0Þ;
dk 2 H�

1
2ðS0Þ

h i
;

ð25Þ
where bP ¼ @ecW ðeFÞ=@eF and H1ðB0Þ is the Sobolev space of square-integrable functions with weak derivatives up to first-or-
der with range in R3.

3.2. Thermal conduction

The variational form of (16), in conjunction with a weak enforcement of temperature continuity across the material inter-
face S0 through Lagrange multipliers, is obtained through a weighted Galerkin method that yields the following mixed var-
iational form:
Z

B�0

dHq0c _HdV0 þ
Z
B�0

rXdH � Q dV0 þ
Z

S0

�ksdHtdS0 þ
Z

S0

d�ksHtdS0 ¼
Z
@Bp

dHQ p � N d@Bp ð26Þ
for all admissible variations
dH 2 H1ðB0Þ
h i

; dH ¼ 0 on @BH;

d�k 2 H�
1
2ðS0Þ

h i
:

ð27Þ
In Eq. (26), the normal heat flux, Q p � N, added to the body is obtained from (22). Eqs. (24) and (26) constitute a system of
strongly coupled residual equations solved using a staggered scheme discussed in Section 4.3.

3.3. Propellant regression

A classical Galerkin weighted residual method is used to derive the variational formulation of (17). The variational state-
ment reads: find UI 2 L2ðX0Þ, such that
Z

X0

_UIwdV0 ¼ �
Z

X0

vewdV0 ð28Þ
for all admissible variations w 2 L2ðX0Þ.
4. Numerical implementation

In this section, we describe the numerical discretization and implementation of Eqs. (24), (26), and (28) within the
context of the generalized finite element method. Let the domain B0 be divided into Ne elements Be

0, with the element
edges chosen independently of the interfaces S0 and C0

I . Let the discretization be composed of NJ displacement and tem-
perature nodes, with partition of unity shape functions v used to describe the geometry and the coordinates in the ref-
erence configuration B0. Let xJ be the support of any node nu;H

I 2 NJ . A set of enriched nodes NI (Fig. 4(a)) is then defined
as
NI ¼ nu;H
I jn

u;H
I 2 NJ;xJ \ S0 – ;

� 	
: ð29Þ



Fig. 4. Section of the finite element mesh in the vicinity of the material interface S0 showing (a) the enriched displacement nodes for a bilinear Q 1 element;
(b) the enriched pressure/volumetric nodes at element centers for a piecewise constant pressure/volume P0 element; and (c) the nodes for the Lagrange
multiplier field.
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The approximate displacement field ~u is composed of a standard (coarse) displacement field ~us and a set of a enriched (fine)
displacement fields ~ue

a as
~uðXÞ ¼
XNJ

j
vjðXÞûj|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

~usðXÞ

þ
X

a

XNI

i
viðXÞw

aâau

i|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
~ue
aðXÞ

; ð30Þ
and a similar approximation for the temperature field H yields
~HðXÞ ¼
XNJ

j
vjðXÞ bHj|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
~HsðXÞ

þ
X
a

XNI

i
viðXÞw

aâaH

i|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
~He

aðXÞ

; ð31Þ
where every node I 2 NI is enriched with a linearly independent enrichment functions wa and âau

i ; â
aH

� �
are the additional

degrees of freedom introduced to approximate the fine enriched displacement and temperature ~ue
a;
eHe

a

� �
fields.

The approximations to pressure p and volumetric field c are constructed from partition of unity shape functions as well.
The pressure nodes Np

J and the volumetric nodes Nc
J are enriched if their supports xp

J and xc
J are intersected by the interface

S0, as shown in Fig. 4(b):
Np
I ¼ np

I jn
p
I 2 Np

J ;x
p
J \ S0 – ;

n o
;

Nc
I ¼ nc

I jn
c
I 2 Nc

J ;x
c
J \ S0 – ;

n o
:

ð32Þ
As in (30), approximations of pressure ~p and volumetric field ~c can be constructed as
~pðXÞ ¼
XNp

J

j
vp

j ðXÞp̂j|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
psðXÞ

þ
P
ap

XNp
I

i
vp

i ðXÞw
ap

âap

i|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
pe
ap ðXÞ

;

~cðXÞ ¼
XNc

J

j
vc

j ðXÞĉj|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
csðXÞ

þ
P
ac

XNc
I

i
vc

i ðXÞw
ac

âac

i|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ce
ac
ðXÞ

:

ð33Þ
The Lagrange multiplier k, introduced in (23), is discretized along the interface S0 and is illustrated in Fig. 4(c). A similar dis-
cretization is adopted for the Lagrange multiplier field �k in (26). The discretization enables construction of the approximate
Lagrange multiplier fields, ~k and ~�k, as
~kðXÞ ¼
PNk

j¼1
vk

j ðXÞk̂j;

~�kðXÞ ¼
PNk

j¼1
vk

j ðXÞ�̂kj;

ð34Þ
where Nk is the set of Lagrange multiplier nodes in the discretization. In the numerical examples presented in Section 5, we
use Q1=P0=V0, Q1, and piecewise constant finite elements for the mixed displacement–pressure–volume ð~u; ~p; ~cÞ, temperature
~H, and Lagrange multipliers ð~k; ~�kÞ, respectively.
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Upon substituting the approximations for ðu; p; c; kÞ in (24), the following system of nonlinear Euler–Lagrange equations
is obtained:
Rus ¼
Z
B�0

b2bP : deFs dV0 þ
Z
B�0

b3~peF�T : deFs dV0

þ
Z

S0

~k � sd~ustdS0 ¼ 0;

Ra
ue ¼

Z
B�0

b2bP : deFe
a dV0 þ

Z
B�0

b3~peF�T : deFe
a dV0

þ
Z

S0

~k � sd~ue
atdS0 ¼ 0;

Rps ¼
Z
B�0

ðeJ � ~cb3Þd~ps dV0 ¼ 0;

Rap

pe ¼
Z
B�0

ðeJ � ~cb3Þd~pe
ap dV0 ¼ 0;

Rcs ¼
Z
B�0

ðb3U0ð~cÞ � ~pÞd~cs dV0 ¼ 0;

Rac

ce ¼
Z
B�0

ðb3U0ð~cÞ � ~pÞd~ce
ac dV0 ¼ 0;

Rk ¼
Z

S0

d~k � s~us þ ~ue
atdS0 ¼ 0:

ð35Þ
An optimally (quadratically) convergent Newton–Raphson scheme is obtained through consistent linearization of the sys-
tem of residual Eqs. (35), as detailed in [12].

The evolution of temperature H between ½tn; tnþ1� is tracked using a backward Euler algorithm with a time step size of
Dt ¼ tnþ1 � tn and the time derivative is evaluated using _H ¼ ðHnþ1 �HnÞ=Dt. Since we are not interested in ignition,
early-time dynamics are not important, and thus, the backward Euler algorithm is acceptable. Residual equations are ob-
tained by substituting the discrete form of temperature H (31) and �k in (15) and (26):
RH ¼
Z
B�0

d eHq0c
eHnþ1 � eHn

Dt

( )
dV0 þ

Z
B�0

rXd eH � ð�Jnþ1Kð eHnþ1ÞÞC�1nþ1rX
eHnþ1 dV0

þ
Z

S0

~�ksd eHtdS0 �
Z
@Bp

d eHQ p � N dSp ¼ 0;

R�k ¼
Z

S0

d~�ks eHnþ1tdS0 ¼ 0:

ð36Þ
Here again, we employ the Newton–Raphson method to solve the system of nonlinear Eqs. (36) and consistent linearization
of (36) is given in Appendix A.

4.1. Geometry description and numerical integration

In this work, we describe the interfaces S0 and C0
I as zero level sets of scalar functions UðXÞ and UIðXÞ, respectively. The

scalar level set functions are then approximated using the standard basis function v as
UðXÞ ¼
X

NJ

vJ
bUðXJÞ; ð37Þ
and
UIðXÞ ¼
X

NJ

vJ
bUIðXJÞ: ð38Þ
In the above equation, the nodal level set function bU is constructed at every node J as
bUðXJÞ ¼ signððXJ � XIÞ � NÞ minðkXJ � XIkÞ; ð39Þ
where XI denotes any point on the interface S0 and N is the outward pointing normal at XI . As a result, each node in the finite
element mesh stores an additional scalar bU, which is then used to track/detect the existence of an interface. A similar ap-
proach is adopted to construct the level set scalar function bUI . In the present study, the material interface S0 is stationary,
and hence the level set function UðXÞ is computed at the outset and remains unchanged thereafter. For each node, the sign of
the level set function U is used to check its position in Bþ0 ;B

�
0 or on S0, and elements are assigned to Bþ0 ;B

�
0 or an intersected
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element set that contain a interface S0. Similarly, the sign of the level set function UI is used to check if a point lies inside the
fluid or solid domain. Implementation details on the detection of the interface can be found in [25].

Conventional Gaussian quadrature is used to integrate the volume integrals in elements that lie completely in Bþ0 or B�0
and the integrals in elements intersected by an interface are computed on partitioned sub-triangles [11].

4.2. Propellant regression

The temporal and spatial discretization of (28) is similar to that adopted by Mourad et al. [18], where an explicit first-or-
der Euler method is used to integrate the system of ODEs that describe the level set function UI at each node i. The ODEs are
then decoupled by using a lumped mass matrix strategy and the resulting nodal update is given by
UI;nþ1
i ¼ UI;n

i � DtðveÞni : ð40Þ
The CFL condition that accompanies (40) is
max
i2NI

ðveÞiDt 6 h: ð41Þ
In the simulations performed in this study, the time step Dt required to obtain temporally accurate solutions for the tem-
perature field (36) is smaller than the CFL condition (41), which is therefore automatically satisfied. The propellant surface
is discretized as a set of piecewise linear segments and we adopt the strategy described in Mourad et al. [18] to construct the
extension velocity field from the surface regression rates rb. The extension velocity ve at any node i is evaluated as
ðveÞi ¼ vejC0
I
; ð42Þ
such that kXC0
I
� Xik is minimum for all points on C0

I . Note that for a heterogeneous solid propellant, the propellant surface
regression rate is discontinuous at material interfaces, and consequently the extension velocities ve constructed from the
surface regression rates are also discontinuous. However, observations by Mourad et al. [18] suggest that the discontinuity
in the extension velocity field do not lead to unstable or oscillatory solutions.

4.3. Operator split methodology

To partition the coupled system (35) and (36) for efficient numerical implementation, a two-stage staggered scheme
based on the isothermal split is used. In the first stage, the mechanical phase (9) is solved with the fixed temperature (iso-
thermal phase), and, in the second stage, the thermal phase (16) is solved during which the configuration or shape of the
body is held fixed. To summarize, the governing equations solved during the two stages are

1. Mechanical phase:
rX � P ¼ 0;
_H ¼ 0:

ð43Þ
2. Thermal phase:
_/ ¼ 0;
q0c _H�rX � Q ¼ 0:

ð44Þ
The solution to the coupled problem is then attained iteratively using an algorithm similar to the one proposed by Ji et al.
[17]. Let ð�Þn;k denote values at time level n and iteration level k, while ð�Þn and ð�Þnþ1 denote converged values at time levels n
and nþ 1. The iterations are stopped upon satisfaction of the convergence criteria defined below:
Su ¼
k~unþ1;kþ1 � ~unþ1;kk2

k~unþ1;0k2
6 Su

tol ð45Þ
and
SH ¼
k eHnþ1;kþ1 � eHnþ1;kk2

k eHnþ1;0k2

6 SH
tol: ð46Þ
The tolerances Su
tol and SH

tol are chosen to be 1e-05 for the numerical examples presented below. Details on the algorithm
associated with the operator split method are provided in Appendix B.

5. Numerical examples

In this section, convergence tests are carried out to assess the performance of the numerical methodologies developed in
Section 3. Furthermore, to ascertain the robustness of the numerical method, the regression of sandwich and heterogeneous
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solid propellants is simulated. As mentioned before, the finite elements considered for the studies are the classical Q 1=P0=V0

elements for the displacements and the bilinear element for temperature. The Heaviside function [12] is used as an enrich-
ment for the pressure and volume fields in (33). A low-order, piecewise constant approximation for the Lagrange multiplier
is adopted as well. For simulations of regression of the solid propellant, portions of the finite elements lying in the fluid phase
Xf

0 are omitted from volumetric integrations, akin to the treatment of holes described in [25].
5.1. Convergence tests

We turn our attention to a spatial mesh convergence study of the non-standard GFEM-based thermomechanical solver
discussed in Section 4. The spatial convergence is assessed by assuming steady-state conditions, i.e., neglecting the time
derivative of temperature H in (16), and a non-regressing propellant surface is considered. The study is performed on a
square propellant domain of length L ¼ 2 mm (the matrix) filled with a circular inclusion (the particle) of radius
a ¼ 0:4 mm (Fig. 5(a)) and is carried out using Q1=P0=V0 elements under 2-D plane strain conditions. The thermomechanical
properties of individual constituents are listed in Table 1. The AP particles are modeled as a compressible solid whereas the
binder is a nearly-incompressible one. The bottom surface of the propellant is restrained in the y direction and has a fixed
temperature of 300 K. To remove rigid-body modes, point P is restrained in the x direction. A constant normal heat flux of
75:31 J=m2ð¼ 18 cal=m2Þ, which is applied on the propellant top surface and is kept traction-free, while adiabatic wall con-
ditions are imposed on the other two sides with traction-free boundaries as well. A level set function (39) is used to describe
the circular inclusion, where the level set function is positive outside the circular inclusion and negative inside. The conver-
gence study is carried out on structured uniform grids composed of 10 � 10, 20 � 20, 40 � 40 and 80 � 80 elements. These
discretizations provide an element size h of 200, 100, 50 and 25 lm, respectively. A typical mesh for the convergence study is
shown in Fig. 5(b).
Fig. 5. (a) Schematic of the boundary value problem used for mesh convergence tests; (b) a sample 20 � 20 finite element mesh.

Table 1
Material properties of constituents of the heterogeneous solid propellant. Values superscripted by a are taken from [26] and values superscripted by b are taken
from [14]. A range of values for the coefficient of linear expansion is found in literature and typical values are chosen here.

Property Symbol AP Binder

Bulk modulusa (MPa) j 14,950 12,500
Shear modulusa (MPa) l 10,670 2.5

Coefft. of linear expansion ðK�1Þ ~a 1e�05 1e�04

Thermal conductivityb ðWm�1 K�1Þ K 0.405 0.276

Densityb ðkg m�3Þ q 1920 950

Specific heatb ðJ kg�1 K�1Þ c 1255.2 1255.2

Activation energyb (K) Ea=R 11,000 7500
Arrhenius constantb ðm s�1Þ A 1450 10.36

Heat of reactionb ðJ kg�1Þ qs �418,400 �196,648



Fig. 6. Errors in displacement Eu , temperature EH and pressure Ep as a function of varying mesh size h (mm) plotted on a logarithmic scale.
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The errors in displacement and temperature, Eu and EH, are defined using typical H1 Sobolev norms
Eu ¼ k~u� urefkH1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k~u� urefk2 þ kr~u�rurefk2

q
;

EH ¼ k eH �HrefkH1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k eH �Hrefk2 þ kr eH �rHrefk2

q
; ð47Þ
while the error measure Ep for the pressure field is defined as
Ep ¼ k~p� prefkL2
: ð48Þ
Due to the absence of an analytical solution for the nonlinear problem discussed here, a fine finite element mesh composed of
42,636 Q 1=P0=V0 elements and 43,037 nodes, that conforms to the bimaterial interface, is used as the reference solution in
(47) and (48). Fig. 6 reports the results for the convergence tests in terms of the dependence of the errors Eu; EH and Ep on the
mesh size h. It is observed that the convergence rates for the numerical method described in Section 4 are in correspondence
with the optimal convergence rate of one.

5.2. Regression of a sandwich propellant

To assess the spatial accuracy of the coupled thermomechanical solver with propellant surface regression, a problem with
a steady-state solution is highly desired. For this purpose, a sandwich propellant that consists of a two-dimensional periodic
array of alternating AP and binder slices in stoichiometric proportions is often used [19]. We start this study by neglecting
the deformation (rigid sandwich propellant) to investigate the spatial convergence of the thermal solver. We then include
the thermomechanical deformations to study their effect on the computed regression rates.

The periodic length of the sandwich propellant is 0.24 mm with the binder filling the middle 0.04-wide region and the
remainder consisting of AP, as shown in Fig. 7. The material properties of AP and binder are those listed earlier in Table 1
and the sandwich propellant surface is subjected to a constant heat flux Q f of 836:8 J=m2ð¼ 200 cal=m2Þ. The problem is
symmetric about the center line, and thus, only half of the domain is simulated.
Fig. 7. Schematic of sandwich propellant showing the moving window at times ta and tb .



Fig. 8. Evolution of propellant surface average regression rate for varying window sizes lBC .

Fig. 9. Spatial convergence of surface temperature profiles and surface positions for the rigid sandwich propellant for different grid sizes.
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To enable faster computations, only the portion of the sandwich propellant enclosed within a moving window is consid-
ered. The lower-edge boundary conditions are imposed on the lower end of the window and the length of the window lBC is
varied to determine the effect of window size on the resulting regression rates �rb, defined by
�rbðtÞ ¼
R

C0
I

rbðs; tÞdsR
C0

I
ds

; ð49Þ
where s is the parametric coordinate along the propellant surface C0
I . Four window sizes of 0.04, 0.08, 0.12 and 0.36 mm are

chosen for this experiment and the results are depicted in Fig. 8. It is observed from Fig. 8 that a window size of 0.12 mm is
sufficient to capture the transient solutions and is therefore used in all simulations reported hereafter.

The regression of the rigid sandwich propellant is studied on four different meshes of sizes 0.5, 1.0, 2.0 and 4:0 lm,
respectively. Fig. 9 shows the spatial distribution of the steady-state surface temperatures and the position of the propellant
surface after t ¼ 0:15 s, with a temporally converged time step of Dt ¼ 2:5� 10�5 s. The surface temperature and position
profiles demonstrate spatial convergence of the method and also enable choice of a suitable grid size h for similar simula-
tions. The time evolution of the average regression rate �rb (49) is shown in Fig. 10 and a closer examination of the steady-
state average regression rate evolution profile reveals periodic oscillations with amplitudes that are dependent on grid size h.
Furthermore, the amplitude of these oscillations decreases with grid size h, also observed by Wang et al. [14].

In addition to the spatially averaged regression rates �rb defined in (49), we study the effect of the mesh size on the time-
average regression rate rb computed in a steady-state time interval ½t1; t2� defined by
rb ¼
R t2

t1
�rbðtÞdt

ðt2 � t1Þ
: ð50Þ



Fig. 10. Evolution of average regression rate�rbfor different mesh sizes. Inset showTable 2
Time-average regression rate
rbas a function of grid sizeh computed in the time interval [0.10,0.15]s. The absorbðmm= sÞ EIOI0.54.5118
1.04.5183 0.00642.04.5239
Fig. 11.Steady-state spatial distribution of (a) temperature and (b) equivalent stra
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The absolute error EI ¼ absð�rb � �rfine
b Þ=�rfine

b is evaluated with respect to the finest grid ð0:5 lmÞ and the overall order is
OI ¼ lnðE2h

I =E
h
I Þ= lnð2Þ. The results are reported in Table 2. It is observed that the overall convergence rate of the time-average

regression rate is approximately 0.91, consistent with the first-order backward Euler time stepping algorithm used here.
We now consider the regression of a deformable sandwich propellant that expands under the influence of large thermal

gradients in the vicinity of the propellant surface. A grid size of 1 lm, based on results tabulated in Table 2, and a time step of
Dt ¼ 2:5� 10�5 s are chosen for this simulation. The spatial distributions of the temperature and equivalent strains within
the sandwich propellant are shown in Fig. 11. The thermal gradients decrease rapidly away from the propellant surface and a
large portion of the thermomechanical strains are found within the thermal boundary layer. In particular, large thermome-
chanical strains concentrate in binder regions close to the AP/Binder material interfaces. These large strains are attributed to
large thermal gradients as well as the highly disparate material properties of AP and the binder (Table 1). The binder expe-
riences large strains approaching 45% which justifies the use of large deformation kinematics for such heterogeneous solid
s a magnified portion of the plot in the time interval [0.100,0.105]s.lute errorEIand the total orderOIof thenumerical scheme are also listed.hðlmÞ
0.0121 0.90724.04.5315 0.0197 0.7017

ins.
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propellant systems. Furthermore, it is observed that most of the thermal strain energy is stored in the binder while the kine-
matic response of AP is rigid-like (due to its high stiffness).

Fig. 12 compares the steady-state regression rates �rb between a rigid and a deformable sandwich propellant. The steady-
state regression rate of the deformable sandwich propellant is found to be lower than the rigid sandwich propellant for iden-
tical material properties and grid sizes. Similar observations were reported by Kuznetsov and Stewart [7], albeit for one-
dimensional homogeneous solid propellants. The aforementioned oscillations in the regression rate are larger for the
deformable sandwich propellant than for its rigid counterpart.

In addition to the regression rates, differences are also observed in the surface temperature and shape profiles as shown in
Fig. 13. In regions farther from the AP/binder interface, the surface temperature profiles are similar and attain steady-state
temperatures of 872 K at x ¼ �0:12 and 974 K at x ¼ 0, while the deformable sandwich propellant has lower surface tem-
peratures in the vicinity of the AP/binder interface ðx 2 ½�0:02;0:02�Þ. Fig. 13 also presents the shape of the propellant sur-
face. The surface shape, overlaid such that the two shapes coincide at x ¼ 0, shows significant differences in the surface
curvature due to the large thermal expansions at the propellant surface. The large extent of thermal expansion in the binder
is also evident in Fig. 14, where the magnitude of the displacements kuk is plotted along the propellant surface.
Fig. 12. Comparison of steady-state average regression rate �rb for rigid and deformable sandwich propellant.

Fig. 13. Comparison of steady-state surface temperature and deformed shape for rigid and deformable sandwich propellant. For ease of comparison, the
surface shapes are overlaid so as to coincide at x ¼ 0.

Fig. 14. Magnitude of displacement kuk along the surface of the sandwich propellant.



5.3. Regression of a heterogeneous propellant

We now examine the effects of coupled thermomechanical processes on the regression rate of a two-dimensional heter-
ogeneous solid propellant pack. As described in Section 5.2, the heterogeneous solid propellant is composed of very stiff but
compressible Ammonium Perchlorate (AP) particles of various sizes embedded in a much more compliant quasi-incompress-



Fig. 16. Snapshots of heterogeneous solid propellant pack, taken at times t ¼ 0:01 s and t ¼ 0:05 s, showing spatial distribution of (a) temperature; (b)
equivalent strains. The moving window at t ¼ 0:01 s is depicted by a red box and at t ¼ 0:05 s is depicted by a black box.

Fig. 17. Surface temperature profile of the heterogeneous propellant pack at times t ¼ 0:01 s and t ¼ 0:05 s.
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Fig. 18. Evolution of average regression rate �rb with time t for rigid and deformable propellant packs. Inset shows a magnified portion of the plot that
contains one complete period of evolution tagged by points ðAR; BRÞ and ðAD;BDÞ.

Table 3
Time-average regression rate rb and the maximum and minimum values of the average regression rate �rb for rigid and deformable propellant packs.

Propellant pack rb ðmm=sÞ max �rb ðmm=sÞ min �rb ðmm=sÞ Standard deviation

Rigid 4.934 5.318 4.410 0.1560
Deformable 4.646 5.120 3.815 0.2595
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deviations of the average regression rate �rb indicate larger variations of instantaneous regression rates for the deformable
solid propellant.

6. Conclusions

This manuscript has described a numerical framework that combines the generalized mixed finite element method with
the assumed gradient level set method to model regression of thermomechanically deforming heterogeneous solid propel-
lants. Spatial convergence of the coupled thermomechanical solver was numerically assessed and found to be optimal. Spa-
tial convergence of the thermomechanical solver with surface regression was also assessed using a periodic sandwich
propellant with the average regression rate used to quantify error measures. The scheme was found to have an overall order,
OI , close to an optimal rate while employing a first-order backward Euler method. Finally, the regression of an idealized two-
dimensional heterogeneous solid propellant pack was chosen to demonstrate the capability and robustness of the developed
framework. It was found that the deformable heterogeneous propellant pack had smaller regression rates than the rigid one.
It was also observed that, within the thermal boundary layer, the binder regions close to AP/binder interfaces experienced
large thermomechanical strains.
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Appendix A. Consistent linearization

A Newton–Raphson algorithm is used to solve the nonlinear system of equations (36). For simplicity, we assume the ther-
mal conductivity K to be a constant. Consistent linearization of (36) then yields
DR½d eH;D eH� ¼ R
B�0

q0c
Dt d eHD eHdV0 þ

R
B�0
ð�JKÞrXd eH � C�1rXD eH dV0 �

R
@Bp

d eH @ðQp �NÞ

@eH D eH dSp;

DR½d eH;D~�k� ¼
R

S0
sd eHtD~�kdS0;

DR½d~�k;D eH� ¼ RS0
d~�ksD eHtdS0;

DR½d~�k;D~�k� ¼ 0:

ðA:1Þ
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Appendix B. Algorithm for operator split

The algorithm adopted for the operator split methodology described in Section 4.3 is described below. Let ð�Þn;k denote
values at time level n and iteration level k, while ð�Þn and ð�Þnþ1 denote converged values at time levels n and nþ 1.
1.
 Increment time tn by Dt, i.e., set tnþ1 ¼ tn þ Dt. At tnþ1, evolve propellant surface through (40).

2.
 Set k ¼ 0 and ð�Þnþ1;0 ¼ ð�Þn and compute
[(a)] If k ¼ 0, set eHnþ1;0 ¼ eHn and compute ~unþ1;kþ1 from (35) using eHnþ1;k.
Compute eHnþ1;kþ1 from (36) using ~unþ1;kþ1.

[(b)] Compute convergence criteria measures Su and SH from (45) and (46).
[(c)] if Su < Su

tol and Su < SH
tol then
compute vnþ1
e from (42)
Proceed to step 3.

else
set k ¼ kþ 1 and goto step (a).

end if
3.
 Return to step 1.
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